Name: \qquad

Geometry Test Study Guide

Fill in the missing information about lines in the chart below:

Name	Definition	Picture
	A part of a line that has one endpoint and goes on and on in the other direction.	
Line Segment		
	\longleftrightarrow	

Use the diagram below to answer the next questions.

Circle all the statements that are TRUE.

Line F is perpendicular to Line Q.
Line M is parallel to line F.
Line Q intersects Line M.
Line R is parallel to Line Q.
Line M intersects Line F.
Line F is perpendicular to Line R.
Line R is perpendicular to Line M.

Circle all the statements about quadrilaterals that are FALSE.
A square is a special kind of rhombus and rectangle.
A quadrilateral has 3 or more sides and vertices.
A parallelogram has 2 sets of opposite sides that are parallel and congruent.

A rectangle has only 2 right angles.
A trapezoid is not a quadrilateral.
A square has 4 equal sides.
\qquad

Fill in the missing information about quadrilaterals in the chart below:

Name	Definition	Drawing
Quadrilateral	A quadrilateral with 2 sets of opposite sides that are parallel and congruent.	
		\square
Square	(
Rhombus	A quadrilateral with exactly one set of opposite sides that are parallel.	\square

\qquad

Name the following 3D shapes and tell how many faces, edges and vertices they each have.

Name: \qquad
Number of faces: \qquad
Number of edges: \qquad
Number of vertices: \qquad

Name: \qquad
Number of faces: \qquad
Number of edges: \qquad
Number of vertices: \qquad

Name: \qquad
Number of faces: \qquad
Number of edges: \qquad
Number of vertices: \qquad

Name: \qquad
Number of faces: \qquad
Number of edges: \qquad
Number of vertices: \qquad
\qquad

Name:
Number of faces: \qquad
Number of edges: \qquad
Number of vertices: \qquad

Name: \qquad
Number of faces: \qquad
Number of edges: \qquad
Number of vertices: \qquad

